Changes in the Dynamics of the Cardiac Troponin C Molecule Explain the Effects of Ca\(^{2+}\)-Sensitizing Mutations

Charles M. Stevens\(^1,2\), Kaveh Rayani\(^2\), Gurpreet Singh\(^4\), Bairam Lotfalisalmasi\(^2\), D. Peter Tieleman\(^4\) and Glen F. Tibbits\(^1,2,3\)*

Running Title: Basis of TnC Calcium-sensitizing mutations

\(^\S\) These authors contributed equally to this work

1 Cardiovascular Sciences, BC Children’s Research Institute, Vancouver, BC, Canada.
2 Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
3 Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
4 Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.

*To whom correspondence should be addressed: Dr. Glen F. Tibbits, Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada, 778.782.3658, E-mail: tibbits@sfu.ca

Keywords: Calcium, Cardiomyopathy, Troponin, Molecular Dynamics, Isothermal Titration Calorimetry (ITC)

ABSTRACT:
Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca\(^{2+}\). TnC binding Ca\(^{2+}\) initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC (NTnC), followed by cTnC binding the troponin I switch peptide (TnISW).

We have evaluated, through isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R and C84Y) on the Ca\(^{2+}\) affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca\(^{2+}\) and TnISW.

Surprisingly the Ca\(^{2+}\) affinity measured by ITC was only significantly affected by half of these mutations including: L48Q, which had a 10-fold higher affinity than WT and the Q50R and C84Y mutants which each had affinities 3-fold higher than wild-type. This suggests that Ca\(^{2+}\) affinity of N-TnC in isolation is insufficient to explain the pathogenicity of these mutations.

Molecular Dynamics (MD) simulation was used to evaluate the effects of these mutations on Ca\(^{2+}\) binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties.

Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca\(^{2+}\) sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca\(^{2+}\) binding site of cTnC.

BACKGROUND:
Familial Hypertrophic Cardiomyopathy (FHC) is the inherited form of Hypertrophic Cardiomyopathy (HCM), the most common cause of sudden cardiac death in young athletes (1), with a prevalence of 1 in 200 individuals (2). There is a growing list of over 1000 mutations that have been associated with HCM, primarily in genes that code for sarcomeric proteins such as the cardiac troponin (cTn) complex (3)(4,5). FHC is difficult to diagnose as it can be clinically asymptomatic prior to sudden cardiac death. The cTn complex is composed of three proteins: cTnC, the Ca\(^{2+}\) sensing component; cTnI, the inhibitory subunit, and cTnT, that tethers the cTn complex to the cardiac thin filament (6). Mutations in cTnC have a pronounced functional effect as the sequence of cTnC is highly conserved throughout vertebrates (7).
In cardiac contraction, the cytosolic Ca\(^{2+}\) concentration fluctuates between 100 nM in diastole and 400 – 1000 nM during systole (8,9). When Ca\(^{2+}\) binds to the regulatory N-terminal domain of cTnC (N-cTnC), a conformational change exposes a hydrophobic region on the surface, which binds to the “switch” region of cTnI. The Ca\(^{2+}\) signal ultimately permits actomyosin cross-bridge formation and force production (6). Sequence substitutions in cTn components demonstrably affect the Ca\(^{2+}\) sensitivity of force production in myofibrils, skinned cardiomyocytes and trabeculae (10-16). The N-cTnC - Ca\(^{2+}\) interaction has been measured with fluorescent probes such as anilino-naphthalenesulfone iodoacetamide (IAANS) (17-19), in which a shift in the dynamic equilibrium between populations of open and closed cTnC is reported in response to the addition of Ca\(^{2+}\). These experiments produced different results for the isolated N-TnC compared to experiments that include the cTn complex and cardiac thin filament proteins actin and tropomyosin (19,20). By understanding the thermodynamic basis of the function of N-cTnC, we can explain this variation and explore the specific effects of disease-associated mutations.

The function of cTnC and other Ca\(^{2+}\)-sensing EF-hand proteins has been described as a balance between the opposing forces that push the cTnC molecule open, and those that keep it closed (21). When Ca\(^{2+}\) binds N-cTnC, it creates a strain on the molecule, which is alleviated when N-cTnC changes conformation to better accommodate the presence of the ion; however, the energetic cost of the unfavorable exposure of a hydrophobic cleft provides a thermodynamic incentive to keep the N-cTnC molecule closed (21). The balance between these forces can be disrupted by sequence substitutions that alter the ability of N-cTnC to tolerate the conformational strain imposed by Ca\(^{2+}\) binding, or substitutions that modify the hydrophobic cleft. The TnI switch peptide (TnISw) binds to TnC and stabilizes the open TnC conformation by occluding the hydrophobic cleft from the aqueous environment. The structural effects of Ca\(^{2+}\) binding have been examined through NMR and X-ray crystallographic data (22-25), including for the HCM-associated TnC mutant L29Q (24,26). These structures and data from MD simulations have demonstrated minimal effects of sequence substitutions on the static structure, but a greater effect on the dynamics of the protein (27-30).

In this study, we report the ITC-derived Ca\(^{2+}\) binding affinity of N-cTnC mutant constructs and their calculated effects on the dynamics, Ca\(^{2+}\) interaction and TnISw interaction strengths. The N-cTnC mutations selected for analysis in this work are the FHC-associated mutations A8V (31-33), L29Q (19,34-36), A31S (13) and C84Y (14), the engineered Ca\(^{2+}\)-sensitizing mutation L48Q (11,15,16,37,38), and the Dilated Cardiomyopathy (DCM) associated mutation Q50R (39) (Figure 1). The C84Y and Q50R mutations each conferred Ca\(^{2+}\) affinities 3-fold higher than WT, while the L48Q Ca\(^{2+}\) affinity was 10-fold higher than wild-type. The combination of MD simulation techniques with ITC explains the molecular etiology of these mutations in terms of the energy landscape of the conformational change. The mutations that favor the open conformation of TnC indirectly increase the Ca\(^{2+}\) affinity of the isolated N-cTnC molecule (40-42). We propose, that mutations that increase the Ca\(^{2+}\) sensitivity of the myofilament destabilize the closed conformation of N-cTnC, stabilize the open conformation of N-cTnC and/or promote association with the TnISw peptide. The results presented in this work demonstrate that many N-cTnC mutations affect myofilament Ca\(^{2+}\) sensitivity by affecting the molecular motions that govern the regulation of cardiac contraction.

RESULTS:

ITC - The interaction between TnC and Ca\(^{2+}\) was endothermic for each of the TnC constructs except L48Q, which was exothermic. In each case the stoichiometric ratio (N) of Ca\(^{2+}\) binding to N-cTnC was 1:1, indicating that the regulatory site II was exclusively titrated during these experiments. Thermodynamic parameters are listed in Table 1 and ITC isotherms are shown in Figure 2. At 25°C each of the K\(_d\) values was within error from the WT, with the exceptions Q50R and C84Y, which each had K\(_d\) values approximately one third of WT, and L48Q, in which the K\(_d\) was one tenth of WT. The ΔS values were lower than WT for A31S, L48Q, Q50R and C84Y. The ΔH values were less favorable than WT for A31S, Q50R, and
C84Y but more favorable than WT for the L48Q construct.

Melting Points - The melting points for all Apo TnC constructs were approximately 65°C, with the exceptions of A8V at 58.5°C and L48Q at 42.5°C (Table S2).

TnC+Ca\(^2+\) Simulations - Each of the simulations diverged from the original coordinates (Figure S1). The representative structures are very similar with a total backbone RMSD of 1.9 Å. The local backbone dynamics are similar over 100 ns (Figure S1). The mutations produce small backbone perturbations compared to WT in their respective local regions and have backbone rmsd values that differ only by between 1.2 Å and 2.4 Å. The mutations can; however, substantially disrupt the packing of interacting side-chains for mutated residues that are not solvent exposed, A8V, L48Q, Q50R and C84Y. The L29Q and A31S substitutions affect fewer residues, but each introduces a hydrogen bond absent from the WT structure (Figure 3). Compared with WT, the A8V model has a modified interaction between the N and D helices, specifically a hydrophobic interaction with that involves residues Y5, A8, V9, and L12 on the N-helix and L78, V79, and V82 on the D helix. In the L29Q model, Q29 is solvent exposed, but the side chain amide is within hydrogen bonding distance of the I26 backbone O. The A31S substitution is in the EF-hand site I loop, and S31 is within interacting distance of the C35 backbone O, which, in the WT model, interacts with the backbone O of L29. The L48Q substitution disrupts a hydrophobic network in the core of the AB-helical interface that is composed of F19, A23, C35, V44, E76 and M80. The side chain amide of Q49 is within interacting distance of the backbone O of M47. The Q50R substitution, located between helices B and C alters helix C of the molecule, an interaction between Q50 and the backbone O of L48 is replaced by a series of hydrogen bonds between R50 and C84, in addition to both side chain O atoms of E56. Finally, the C84Y substitution disrupts a hydrophobic interaction between C84 with M60, M45, P52 and Q50. Instead, Y84 is within interacting distance with the backbone O of M60.

The Ca\(^2+\) coordination geometry and distances are similar for all constructs with the exception of A8V, which has tighter Ca\(^{2+}\) coordination geometry (Table S3). This is likely correlated with the PMF results discussed in detail below.

The average number of H-bonds in each mutant structure is the same over the course of each simulation, as are the average h-sasa in the closed and open forms (Table S4); however, monitoring the A/B interhelical angle (Figure 4) and h-sasa (Figure S3) over repeated 1 µs simulations demonstrates the frequency with which the TnC protein exposes the hydrophobic patch. The L29Q construct is least frequently open, followed in order by C84Y < A8V < WT < Q50R < A31S, and <L48Q. One of the replicated L29Q simulations had very high AB interhelical angles for a time; this was due to a transient loss of secondary structure, though it did not affect the exposed hydrophobic sasa (Figure S2). The interhelical angle data can be expressed as the probability of observing the open conformation of the protein. An angle of 110° has been described as the maximum angle that can be considered open. The proportion of frames in which the N-cTnC molecule had an open AB interhelical angle was 0 for the A8V, L29Q, and C84Y constructs, 0.004% for the Q50R construct, 0.008% for WT, 0.016% for A31S and 0.07% for the L48Q N-cTnC (Figure 5). By defining cutoff angles for the transition between closed and open at 130° and 110° we can determine the probability of observing the N-cTnC molecule in the closed state (AB interhelical angle >130°) and gain insight on the relative stability of the closed conformation (Figure 5). The A8V construct has the lowest closed probability at 58%, followed by C84Y at 65%, WT and L48Q at 76%, Q50R and A31S at 86% and 88%, respectively, and finally L29Q at 92%.

TnC+Ca\(^{2+}\)+TnISW simulations - The effects on the structural interactions between the TnC molecule and TnISW are subtle when averaged across the simulations (Figure 6), and as expected, the majority of the specific contacts are maintained when each of the N-cTnC mutants are compared to WT N-cTnC. The TnISW remains in contact with the TnC molecule for the duration of the simulations, but the specificity of that contact is somewhat different in response to certain mutations. For example: L29Q, A31S and Q50R make more common contacts between the N-
terminal region of TnISW and the N-helix of TnC than WT, whereas L48Q and C84Y make fewer contacts than WT in this region. These results suggest that alterations in this binding interface may be due to modified interactions between the TnISW and other regions of the protein near the mutation sites.

Free Energy Calculations - The free energy change in Ca\(^{2+}\) binding, measured by potential of mean force (PMF) calculations (Figure 7) indicates that the highest free energy change was observed in the A8V construct (-72 ± 5 kJ mol\(^{-1}\)), followed by Q50R (-41 ± 3 kJ mol\(^{-1}\)) and C84Y (-46 ± 3 kJ mol\(^{-1}\)), A31S (-46 ± 2 kJ mol\(^{-1}\)) and L29Q (-46 ± 2 kJ mol\(^{-1}\)), and finally L48Q (-32 ± 3 kJ mol\(^{-1}\)) and WT (-32 ± 4) kJ mol\(^{-1}\). A representative structure from the 5 replicated 1 µs simulations of the A8V mutation yielded Ca\(^{2+}\) coordination distances that were similar to the other mutant constructs and a PMF derived Ca\(^{2+}\) interaction \(\Delta G\) of 46 ± 5 kJ mol\(^{-1}\).

Interaction energies between TnC and the TnISW were estimated by Molecular Mechanics / Poisson Boltzmann Surface Area (MM/PBSA) calculations. The energies reported are much larger than could be reasonably expected, although this method has been used as a means to score the relative strength interactions with some success (43). The values are similar for each of the constructs, with the exception of the A31S mutant, which has a weaker calculated binding interaction (Table 2).

DISCUSSION:

The measurements described in this study have provided novel information about the molecular basis of N-cTnC function in the regulation of cardiac muscle contraction. Muscle contraction begins when N-cTnC binds to Ca\(^{2+}\), opens, and interacts with TnISW. The cTnC molecule also interacts with the cardiac-specific N-terminal extension of TnI (44), which responds to the phosphorylation of TnI residues 22 and 23 (19). In the presence of the Tn complex, the cTnC Ca\(^{2+}\) affinity increases by 10-fold over the isolated cTnC molecule. Improved affinity was attributed to the stabilized open conformation (5,45). Our hypothesis was that the Ca\(^{2+}\) sensitizing mutations would directly increase Ca\(^{2+}\) affinity on the isolated N-cTnC, while de-sensitizing mutations reduce the N-cTnC Ca\(^{2+}\) affinity. Mutations were hypothesized to affect TnC function through directly modifying Ca\(^{2+}\) coordination or modifying the energetic cost of the N-cTnC conformational change. Mutations in the Tn complex have been shown to modify Ca\(^{2+}\) affinity indirectly through altering the interaction between N-cTnC and the TnISW (5,45). We have explored this hypothesis through ITC measurements of Ca\(^{2+}\) affinity and MD simulations that: 1) assess the strength of the Ca\(^{2+}\) binding interaction; 2) describe the properties of the N-cTnC conformational change, and 3) measure the strength of the interaction between N-cTnC and the TnISW peptide.

It is challenging to directly measure the N-cTnC Ca\(^{2+}\) interaction. Fluorescence-based experiments employ reporters such as IAANS (17-19), or an F27W mutation (46). Upon titration with Ca\(^{2+}\), the fluorophore reports the N-cTnC conformational change as a measure of N-cTnC Ca\(^{2+}\) affinity, while measurements made using stopped flow fluorospectroscopy report rates of Ca\(^{2+}\) dissociation (15). The \(K_d\) for WT TnC has been previously reported fluorometrically as 11.3 µM for WT N-cTnC, which was lowered to 8 µM with the L29Q mutation (34). Similarly, fluorescence titration of the N-cTnC/Ca\(^{2+}\) interaction yielded midpoint values of 12.3 µM for WT N-cTnC, 12.9 µM for A8V, and 37.2 µM for C84Y (5). Our ITC experiments, which consider the unmodified N-cTnC molecule, demonstrated no statistically significant differences in \(K_d\) between WT and the FHC-associated mutants, with the exception of C84Y (Table 1). Our measurements of the DCM associated mutant Q50R and engineered Ca\(^{2+}\)-sensitizing mutation L48Q have shown a three-fold and ten-fold increase in affinity for Ca\(^{2+}\), respectively. Our results agree with the previously reported \(K_d\) for full-length cTnC at 24 µM (16), which decreased to 1.9 µM in the L48Q construct (16). When compared to another ITC study of the WT N-cTnC/Ca\(^{2+}\) interaction, the \(\Delta G\) are approximately 3 kJ mol\(^{-1}\) lower (47). Each of A31S, L48Q, Q50R, and C84Y, produce increased \(\Delta H\) and decreased \(\Delta S\) values relative to WT, although the molecular basis of these changes is not necessarily the same. The A31S mutation stabilizes the loop between helices A and B with a hydrogen bond, which accounts for changes in
both ΔH and ΔS. The L48Q, Q50R and C84Y mutations are along the interface between the NAD and BC helical bundles, which likely reduces the entropic cost of the closed/open transition by introducing a polar residue into a hydrophobic region. Each of these substitutions also creates at least one new hydrogen bond that affects ΔH (Figure 3).

The increases in Ca^{2+} affinity of L48Q and Q50R N-cTnC were attributed to the reduced cost of exposing the hydrophobic patch. Our ITC experiments reported lower ΔS values for these mutants (Table 1), associated with the exposure of hydrophobic residues. The changes in ΔS are consistent with our measurement of the A/B interhelical angle, as the molecule transitions into the open form; hydrophobic residues in the interface between the NAD helical bundle and the BC helical bundle are exposed. This has been demonstrated in another MD-based study of the L48Q and V44Q N-cTnC mutations (38). In the A31S mutation the ΔS value is lower than that of WT, perhaps due to the hydrogen bond formed by the serine, which reduces the mobility of the loop, a finding consistent with a previous exploration of A31S (13). The C84Y mutant disrupts the side-chain packing between C84 and several residues between helices C and D, and produces a more favorable open conformation (Figure 3). Despite the overall structural similarity of the mutant constructs, there are changes in side-chain packing due to each substitution compared to the WT model (Figure 3). The melting points were lower for the A8V and L48Q mutants, consistent with the observation that they spend the least time in the closed conformation. That the hydrophobic interactions disrupted by these mutations have an important role in the stability of the N-TnC molecule (Figure 5).

Small-angle X-ray scattering (SAXS) has been used to investigate tertiary protein contacts in the apo and Ca^{2+}-bound states of the A8V and A31S mutants. Despite minimal structural changes in these mutants, this technique can be used to uncover potentially lower stability resulting from salient local changes in FHC mutants (48).

The strengths of the charge-charge interactions that govern the direct Ca^{2+}/N-cTnC interaction are proportional to the distance between the Ca^{2+} ion and the coordinating oxygen atoms (Table S2). The PMF-derived ΔG of Ca^{2+} binding of the L48Q mutation was most similar to the WT protein, and the remaining mutations each yielded stronger Ca^{2+} interactions (Figure 7). Notably the A8V interaction was the strongest, and the Ca^{2+} coordination was the tightest in 100 ns simulations, however this was not found in the Potential of Mean Force (PMF) calculation based on the 1 μs simulation (Figure 7). The absolute values of the interaction energies are overestimated due to the parameterization of Ca^{2+} in the simulation; however, the results are useful as a relative measure of the change in free energy of binding (49).

In skeletal TnC, the affinity for Ca^{2+} is inversely related to protein stability. It is reasonable to assume that similar mechanisms govern the cardiac isoforms of this protein (50). The affinity of N-cTnC for Ca^{2+} is set by a balance between the conformational strain induced by Ca^{2+} binding that is acting to open the N-cTnC molecule and the energetic cost of exposing a hydrophobic cleft (21). Introduction of a polar amino acid into the hydrophobic cleft reduces the cost of opening N-cTnC by destabilizing the closed conformation or stabilizing the open conformation (41). Ca^{2+} binding causes a change in the dynamic equilibrium of the populations of open and closed TnC molecules. When Ca^{2+} is bound, 20-27% of the N-cTnC population is open (33,51). Previous MD simulations have estimated the ΔG of the WT cTnC open/closed transition at 33.5 kJ.mol$^{-1}$ (27). The N-cTnC conformational change necessarily precedes the TnISW interaction and therefore changes in the favorability of the conformational change are related to the probability of N-cTnC binding to the TnISW (27).

Monitoring the A/B interhelical angle through 1 μs simulations has revealed that mutations affect the conformational dynamics of N-cTnC (Figure 5). A previous study had defined the N-cTnC molecule as “open” with an AB interhelical angle < 110º (27). We define a closed structure as any with an AB interhelical angle > 130º, similar to the NMR structure of N-cTnC (22). This allows for the quantification of the relative stability of the closed state (Figure 5). The open conformation is found most frequently in simulations of the L48Q
construct, followed by the A31S mutation. Work by Marques et al. shows that A31S may cause greater exposure in the primed state of the full length TnC (ie. when Ca$^{2+}$ is bound to sites III/IV) (48). A similar degree of openness was observed for the remaining constructs, a finding corroborated the hydrophobic solvent accessible surface (h-sasa) (Figure S3). The L29Q mutant was the least open; interhelical angles below 115º were not observed, and had the highest closed probability. The closed state was least frequently observed in the A8V construct, which is consistent with paramagnetic NMR data that show that A8V cTnC opened more readily than WT N-cTnC (33), and contribute to the increased affinity between A8V TnC and TnISW (31). These data suggest that the molecular etiology is different for each mutation, despite producing a similar disease phenotype.

The ΔG of N-cTnC and TnISW interaction is similar to WT for each of the N-cTnC mutants with the exception of A31S, which is approximately 75% of the WT ΔG (Table 2). As with the PMF calculations, the ΔG values derived from MM/PBSA calculations provide insight into the relative strengths, but the absolute values are not expected to correspond to more computationally expensive calculations, or experimentally derived measurements (43). The A31S N-cTnC has a modified interface with TnISW, which favors closer interactions with the N-terminal region of TnC and longer distance interactions with remainder of N-cTnC, particularly in the vicinity of the mutation (Figure 6). Relative to WT, each mutant has a slightly different interaction with TnISW, but did not produce a change in interaction energy. We have previously observed a similar effect in the zebrafish TnC/TnISW interaction in which TnI substitution had a greater effect on the interaction than TnC substitution (52). There is fluorescence-based evidence that each of the L48Q (53) and A8V (31) N-cTnC mutations increase the affinity of N-cTnC for the TnISW, but did not produce a change in interaction energy. We have previously observed a similar effect in the zebrafish TnC/TnISW interaction in which TnI substitution had a greater effect on the interaction than TnC substitution (52). There is fluorescence-based evidence that each of the L48Q (53) and A8V (31) N-cTnC mutations increase the affinity of N-cTnC for the TnISW, our results suggest that this affinity change may be due, in part, to the ability of these mutants to open more readily than WT which generates more opportunity for TnC-TnI interaction.

This work provides insight into how the dynamics of N-cTnC can govern the interactions with each of Ca$^{2+}$ and cTnl, which in turn, influence sarcomeric Ca$^{2+}$ sensitivity. The engineered L48Q mutation has the most salient effect on the N-cTnC ITC-derived Ca$^{2+}$ binding and on the dynamics of the N-cTnC molecule. A finding that has been corroborated, experimentally (16,53), in silico (38) and in vivo (11,37). The L48Q mutation has a large disruptive effect on the hydrophobic interactions that maintain N-cTnC in the closed conformation, which creates increased Ca$^{2+}$ affinity through a modification of the thermodynamic landscape of the conformational change, and allows the TnISW to bind to N-cTnC more readily (53). Through these molecular changes, the L48Q mutation can produce a positive inotropic effect, or with higher sarcomere incorporation and β-blocking drugs, can produce hypertrophy in murine models (11,37). The L29Q mutation was similar to WT in each of our measurements; However, L29Q has been shown to affect length-dependent activation and modify the response to phosphorylation of serine 22/23 of cTnl (19,26,54,55). The A8V and C84Y mutations are near the interface with the N-helix of TnI (Figure 1), and may have a more pronounced effect on the orientation of N-cTnC in the Tn complex (56).

Our results support the model for the molecular mechanism of Ca$^{2+}$ binding which is dictated by the favorability of the conformational change and the stability of the TnI-TnC (42) interaction. Mutations modify the structural dynamics of TnC, rather than the regulatory Ca$^{2+}$ binding site. The changes are observed in the relative favorability of the protein conformations that transduce the contraction signal (Figure 8). This can increase Ca$^{2+}$ sensitivity of contraction by destabilizing the closed conformation of N-cTnC, stabilizing the open conformation, or stabilizing the TnISW interaction. These changes lead to an increase in the Ca$^{2+}$ buffering capacity of the myofilament that may increase the duration of the Ca$^{2+}$ transient, and is consistent with observations of the greater capacity of the Tn complex to bind Ca$^{2+}$ than the isolated N-cTnC molecule (16,20,45). The complimentary use of MD, ITC, and fluorometric techniques provides detailed information about the molecular etiology of cTnC.
mutations. A complete understanding of the molecular and thermodynamic basis for myofilament Ca\(^{2+}\) sensitivity will inform the risk stratification of existing and novel FHC-associated mutations, the selection of appropriate therapeutics and enable rational drug development that specifically target or compensate for the unique deleterious effects of these disease mutations.

EXPERIMENTAL PROCEDURES:

The codon-optimized gene sequence for human TNNC1 was cloned into the pET21a(+) vector (Novagen). A stop codon was introduced at position 90 by following the Phusion site-directed mutagenesis protocol (Thermo). Protein expression, purification, melting point determination and ITC were carried out using protocols modified from previous work (30). The N-cTnC construct corresponds to the human TNNC1 gene (Uniprot ID P63316), which was cloned into the pET-21a+ expression vector (Novagen). The codon corresponding to residue 90 was mutated to a stop codon, and individual mutations were introduced with the Phusion site-directed mutagenesis kit (Thermo). Mutated constructs were sequenced and transformed into the BL21(DE3) host strain. Overnight cultures were grown in lysogeny broth supplemented with 50 µg/mL ampicillin at 37°C overnight with shaking at 250 RPM. 1% subcultures were grown for 3 h followed by induction with 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) and a further 3 h of growth. Cells were harvested by centrifugation and resuspended in 50 mM Tris-HCl at pH 8.0, 1 mM phenylmethylsulfonyl fluoride (PMSF), 5 mM ethylenediaminetetraacetic acid (EDTA), and a complete protease inhibitor tablet (Roche). The cells were sonicated on ice at 80% amplitude with 30-second pulses separated by 30 seconds. The lysate was centrifuged at 30,000 x g for 30 mins, and the supernatant decanted. The protein was purified with a fast-flow DEAE column (GE Healthcare). The column was equilibrated with 50 mM Tris-HCl pH 8.0, 100 mM NaCl and 1 mM DTT. The fractions that contain the pure N-cTnC protein were pooled, concentrated and stored at -80°C.

ITC buffer contained 50 mM HEPES at pH 7.2, and 150 mM KCl, protein samples were dialyzed 3 times against 2 L of ITC buffer and diluted to 200 µM. In successive dialysis steps, 15 mM β-mercaptoethanol (BME) of and 2 mM DTT, 15 mM of BME and 2 mM of BME were added to the buffer. An extinction coefficient of 1490 M\(^{-1}\) cm\(^{-1}\) and a MW of 10.1 kDa were used to measure protein concentration. The Ca\(^{2+}\) solution was diluted from a 1 M Ca\(^{2+}\) solution (Sigma) into the buffer from the final dialysis step to a final concentration of 4 mM. Ca\(^{2+}\) was titrated into the protein solution by a single 0.4 µl injection, followed by a series of 18, 2 µl injections at 2 min intervals while stirring at 1,000 rpm. The experiments were carried out at 25°C. The heat of dilution of Ca\(^{2+}\) was accounted for by subtracting the average of the final three data points from the titration curve. Analysis was performed with Origin 8.0 (OriginLab, Northampton, MA).

To measure the melting point of the proteins, the samples were first dialyzed 4 times against 2 L of MT buffer (10 mM HEPES pH 7.5, 150 mM KCl, 3 mM MgCl\(_2\), 2 mM EGTA) and combined with 2.5 µL of 100-fold diluted SYPRO orange (Thermo) to a final concentration of 3 mg/mL. The temperature was increased from 4°C to 95°C at 5 second intervals using a CFX96 Touch Real-Time PCR system (BioRad). The melting point was determined at the midpoint of the unfolding transition, which is indicated by the peak of the first derivative curve.

Equilibrium MD simulations of WT and mutant TnC were performed as previously described (30,52) with the exception that all calculations in this study were performed at 300 K. Structural models of the mutant constructs were generated with the Swiss-model workspace (57), The N-cTnC + Ca\(^{2+}\) models used the NMR-derived structure of human N-TnC as a template (PDB:1AP4)(22) and the models of the human N-TnC in complex with Tnl\(_{SW}\) were based on the WT
NMR derived structure of N-cTnC in complex with Ca\(^{2+}\) and cTnI residues 147-163 (PDB:1MXL) (23).

The structural models were simulated using GROMACS 4.6.5 (58), and the AMBER99sb-ILDN force field (59), the models were placed in a periodic, cubic simulation system and solvated with the TIP3P water model (60), charges were neutralized with the addition of K\(^+\) or Cl\(^-\) ions. The composition of each system is listed in table S1. The systems were energy minimized using the steepest descent algorithm to a tolerance of 10 kJ mol\(^{-1}\) nm\(^{-1}\) followed by conjugate gradient minimization for 10,000 steps. 100 kJ mol\(^{-1}\) nm\(^{-1}\) restraints were placed on every protein and Ca\(^{2+}\) atom and the system was simulated for 1 ns to allow the water to equilibrate around the protein.

The WT and mutant N-cTnC+Ca\(^{2+}\) systems were then simulated for either 100 ns or 1 µs total time and the WT and mutant N-cTnC+cTnISW+Ca\(^{2+}\) constructs were simulated for 100 ns total (Figure 1. B & C). All of the simulations were performed with Berendsen pressure coupling (61) with a \(\tau_T\) of 0.1, V-rescale temperature coupling (62) with a \(\tau_T\) of 4.0, PME electrostatics (63) with a grid spacing of 0.12 nm and interpolation order of 6, the Verlet cut-off scheme was used with a 1.0 nm cut-off (64). Bond lengths were constrained with the LINCS algorithm (65).

Clustering was carried out over the backbone and C\(\beta\) atoms of each construct using the Daura algorithm (66). The degree of the open/closed N-cTnC conformational change and protein stability were assessed through measurements of the solvent accessible surface area, the interhelical angles and the number of hydrogen bonds, which were calculated using g_sas(67), Interhxl (68), and g_hbond (58), respectively. The g_hbond program used a cut-off radius of 3.5 Å, and 30\(^\circ\) angle to define a given hydrogen bond.

Umbrella Sampling and Potential of Mean Force (PMF) calculations were performed as described previously (30). The Ca\(^{2+}\) was extracted from the N-cTnC molecule by restraining the \(\alpha\)-helical C\(\alpha\) atoms with a force constant of 1000 kJ mol\(^{-1}\) nm\(^{-1}\) and restraining the Ca\(^{2+}\) ion in the Y and Z dimensions with a force constant of 1000 kJ mol\(^{-1}\) nm\(^{-1}\). A constraint pulling force in the X direction as applied at 0.01 Å per second until the Ca\(^{2+}\) ion was 5 nm from the N-cTnC molecule. The conformations for umbrella sampling were extracted from the resulting trajectory at distance intervals of 0.5 Å between 0 and 1 nm, every 1 Å between 1 nm and 2 nm, and every 2 Å between 2 nm and 5 nm. Umbrella simulations were run with the same parameters as the pull simulations, with the “pull rate” parameter set to 0, and were unrestrained aside from a single restraining potential between the center of mass of the N-cTnC molecule and the center of mass of the Ca\(^{2+}\) ion. These simulations were run for 30 ns each and a potential of mean force was calculated with the weighted histogram analysis method (WHAM) through the use of g_wham (69), and errors were estimated with 5,000 bootstraps of the WHAM calculation. To further explore the outlier A8V mutation, the process was repeated using the center structure of the most populous cluster from the 5 replicated 1 µs simulations.

Interaction energies between the TnC models and TnISW were calculated with g_mmpbsa (70) 100 ps apart over the last 10 ns of each equilibrium simulation of the TnISW/N-cTnC complex. The MM/PBSA calculations used the non-linear Poisson-Boltzmann equation and calculations were performed at 300 K, with a solvent dielectric constant of 80, and probe radius of 1.4 Å. Contact maps of the interacting surfaces between N-cTnC and the cTnISW were calculated over the final 50 ns of each simulation and were based on measurements made with g_mindist (58).

ACKNOWLEDGEMENTS:
This study was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada to GFT and to DPT and CIHR to GFT. GFT is a Tier I Canada Research Chair and DPT is an Alberta Innovates Health Solutions Scientist and Alberta Innovates Technology Futures Strategic Chair in (Bio) Molecular Simulations. Molecular dynamics simulations were carried out on the Westgrid and Cacul Quebec Complexes, which are under the aegis of Compute Canada. We are grateful
for GROMACS tutorials by Justin Lemkul and alchemistry.org and to Christine Genge and Laura Dewar for careful reading of the manuscript.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest with the contents of this article.

AUTHOR CONTRIBUTIONS:

CMS and BL performed preliminary PMF simulations
KR introduced mutations, purified protein, collected ITC & Tm data
CMS and GS developed MD simulation and analysis protocols
CMS built homology models, performed and analyzed MD simulations, PMF calculations, MM/PBSA calculations, long timescale simulations
KR and CMS analyzed ITC & Tm data
CMS and KR wrote the manuscript
CMS, KR, DPT, GFT reviewed the manuscript

References:

44. Hwang, P. M., Cai, F., Pineda-Sanabria, S. E., Corson, D. C., and Sykes, B. D. (2014) The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc Natl Acad Sci U S A 111, 14412-14417

Table 1: Thermodynamic parameters derived from ITC, for all mutants (n=3). For each parameter * indicates significant difference from WT (p<0.05).

<table>
<thead>
<tr>
<th>N-cTnC construct</th>
<th>N</th>
<th>K_d (µM)</th>
<th>ΔS (J mol$^{-1}$deg$^{-1}$)</th>
<th>ΔH (J mol$^{-1}$)</th>
<th>ΔG (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>1.05 ± 1e-2</td>
<td>14.9 ± 0.7</td>
<td>140.5 ± 2</td>
<td>1.43e4 ± 6e2</td>
<td>-2.76e4 ±1e2</td>
</tr>
<tr>
<td>A8V</td>
<td>1.01 ± 2e-2</td>
<td>15.3 ± 0.9</td>
<td>141.6 ± 2</td>
<td>1.47e4 ± 4e2</td>
<td>-2.75e4 ± 2e2</td>
</tr>
<tr>
<td>L29Q</td>
<td>0.99 ± 1e-2</td>
<td>14.2 ± 0.4</td>
<td>145.0 ± 1</td>
<td>1.56e4 ± 4e2</td>
<td>-2.77e4 ± 5e1</td>
</tr>
<tr>
<td>A31S</td>
<td>0.88 ± 3e-2</td>
<td>11.8 ± 1.1</td>
<td>124.5 ± 2*</td>
<td>8.99e3 ± 3e2*</td>
<td>-2.81e4 ± 2e2</td>
</tr>
<tr>
<td>L48Q</td>
<td>1.02 ± 3e-2</td>
<td>1.48 ± 0.1*</td>
<td>50.1 ± 1*</td>
<td>-1.84e4 ± 2e2*</td>
<td>-3.33e4 ± 8e1*</td>
</tr>
<tr>
<td>Q50R</td>
<td>1.05 ± 1e-2</td>
<td>5.85 ± 0.1*</td>
<td>120.8 ± 1*</td>
<td>6.15e3 ± 1e2*</td>
<td>-2.99e4 ± 8e1*</td>
</tr>
<tr>
<td>C84Y</td>
<td>0.96 ± 2e-2</td>
<td>4.19 ± 0.9*</td>
<td>113.9 ± 2*</td>
<td>3.12e3 ± 1e2*</td>
<td>-3.09e4 ± 5e2*</td>
</tr>
</tbody>
</table>

Table 2. MM/PBSA results for the WT and mutant N-cTnC/TnIα interaction

<table>
<thead>
<tr>
<th></th>
<th>A8V</th>
<th>L29Q</th>
<th>A31S</th>
<th>L48Q</th>
<th>Q50R</th>
<th>C84Y</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Waals</td>
<td>-3.0E+02</td>
<td>3.5E+01</td>
<td>-3.2E+02</td>
<td>4.1E+01</td>
<td>-3.0E+02</td>
<td>6.4E+01</td>
<td>-3.1E+02</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>-1.7E+03</td>
<td>2.8E+02</td>
<td>-2.0E+03</td>
<td>2.8E+02</td>
<td>-1.7E+03</td>
<td>2.9E+02</td>
<td>-1.9E+03</td>
</tr>
<tr>
<td>Polar</td>
<td>8.1E+02</td>
<td>2.3E+02</td>
<td>1.0E+03</td>
<td>2.7E+02</td>
<td>1.1E+03</td>
<td>2.0E+02</td>
<td>1.0E+03</td>
</tr>
<tr>
<td>SASA</td>
<td>-3.9E+01</td>
<td>3.2E+00</td>
<td>-4.1E+01</td>
<td>4.7E+00</td>
<td>-3.9E+01</td>
<td>7.7E+00</td>
<td>-4.0E+01</td>
</tr>
<tr>
<td>Total</td>
<td>-1.3E+03</td>
<td>1.2E+02</td>
<td>-1.3E+03</td>
<td>6.3E+01</td>
<td>-9.6E+02</td>
<td>2.2E+02</td>
<td>-1.3E+03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Q50R</th>
<th>C84Y</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Waals</td>
<td>-3.1E+02</td>
<td>2.7E+01</td>
<td>-3.2E+02</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>-2.0E+03</td>
<td>1.8E+02</td>
<td>-1.7E+03</td>
</tr>
<tr>
<td>Polar</td>
<td>1.1E+03</td>
<td>2.0E+02</td>
<td>8.4E+02</td>
</tr>
<tr>
<td>SASA</td>
<td>-4.1E+01</td>
<td>3.0E+00</td>
<td>-4.0E+01</td>
</tr>
<tr>
<td>Total</td>
<td>-1.2E+03</td>
<td>5.4E+01</td>
<td>-1.2E+03</td>
</tr>
</tbody>
</table>
Figure 1. A. Structure of the core domain of the Tn complex (pdb: 1j1e) with each of the residues that were selected for this study highlighted. The troponin complex proteins are colored white (cTnC), grey (cTnT) and black (cTnI). B. The isolated N-cTnC domain bound to Ca$^{2+}$ used in the PMF simulations. Helices and mutation sites are labeled. C. The N-cTnC domain bound to the TnISW and Ca$^{2+}$ is the system used in the TnISW binding simulations. D. A schematic of the N-cTnC construct. The helices, Ca$^{2+}$ binding loop and the residues being examined in this study are labeled.
Figure 2. Representative isotherms for each of the TnC constructs at 25°C. The isotherms for WT and each mutant are endothermic, except for the exothermic L48Q isotherm.
Figure 3. Structural changes induced by each of the mutations. In each panel, the left side contains a representative structure of each mutation superimposed with the wild-type structure (white). To orient the reader, a red arrow indicates the location of the mutation on the structure. Changes to side chain packing in the immediate area of each mutation are demonstrated on the right for each of the mutations. While the changes to the backbone are very subtle, there are side chain rearrangements in the local vicinity of the mutations, particularly for the mutations that occur at helix-helix interfaces such as A8V, L48Q and Q50R.
Figure 4. The A/B interhelical angle is plotted as a function of time for 5 replicated simulations of for each mutated model. Plots are a rolling average of 250 ps. An interhelical angle less than 110° is considered open, and above 130° is considered closed. There is little difference between WT and most of the constructs, with the exception of the L48Q model. The large angle values in one replicate of the L29Q simulations is an artifact due to a transient loss and recovery of secondary structure in one of the replicated simulations, the hydrophobic solvent accessible surface area is not increased as a function of this change. The h-sasa as a function of time is reported in figure S4.
Figure 5. Violin plot demonstrating the distribution of open and closed N-cTnC structures observed over 5 replicated 1 µs simulations. The open conformation was defined by an AB interhelical angle less than 110°, while the closed conformation defined by an AB interhelical angle greater than 130°. The proportion of open frames is not correlated with the proportion of closed frames. The L48Q construct has the most frames in the open conformation while the A8V is the least closed. This suggests that the destabilization of the closed conformation does not necessarily imply that the open conformation is stabilized.
Figure 6. Average distance between cTnC and cTnI residues. The mutated TnC residue in each plot is indicated by a grey bar. The structures to the right are representative structures of independent simulations and indicate the differences in the orientation and variability of the cTnISW peptide across replicates for each mutant. The TnISW is colored as a spectrum from blue at the N-terminus to red at the C-terminus. The calculated ΔG of interaction is maintained across mutations despite differences in the interaction distance profiles, which suggests a nonspecific interaction. The A31S mutant has a ΔG of interaction with the TnISW approximately 25% lower than WT (Table 2), perhaps due to shorter interaction distances with the N-terminal region of N-cTnC, but longer interaction distances in the vicinity of the A31S mutation and C-terminal portion of the TnISW.
Figure 7. The potential of mean force profile of each of the mutated constructs as a function of center of mass distance between the TnC molecule and Ca²⁺ ion. Each of the mutated constructs has an increased ΔG of Ca²⁺ interaction. L48Q (-32 ± 3 kJ/mol) is the closest to WT (-32 ± 4 kJ/mol), followed by Q50R (-41.3 ± 3 kJ/mol), L29Q (-46 ± 2 kJ/mol), C84Y (-46 ± 3 kJ/mol) A31S (-46 ± 2 kJ/mol), and A8V (-46 ± 5 kJ/mol), which are similar to each other.

Figure 8. Schematic of the energetic landscape of N-cTnC activation. N-cTnC is shown as a cartoon, Ca²⁺ is a blue circle, and the TnI switch peptide is represented as a red ellipse. Lower energy states are more favorable. The orange arrows represent the resistance to the conformational change due to the hydrophobic cleft. Blue arrows indicate conformational strain introduced by Ca²⁺ binding. The Ca²⁺ bound, open conformation relieves the conformational strain, while occluding the hydrophobic cleft and is therefore the most favorable conformation. Mutations that affect the relative stabilities of these states will modify the probability of transitions between them and increase or decrease the Ca²⁺ sensitivity of the myofilament.
Changes in the Dynamics of the Cardiac Troponin C Molecule Explain the Effects of Ca$^{2+}$-Sensitizing Mutations
Charles M Stevens, Kaveh Rayani, Gurpreet Singh, Bairam Lotfalialsalmasi, D. Peter Tieleman and Glen F Tibbits

J. Biol. Chem. published online May 22, 2017

Access the most updated version of this article at doi: 10.1074/jbc.M116.770776

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2017/05/22/M116.770776.DC1